ENDOTHERMIC VS. EXOTHERMIC WORKSHEET

Identify the following reactions as endothermic or exothermic.

1.
$$C_2H_4 \rightarrow 2C + 2H_2 + 52.3 \text{ kJ}$$

2.
$$B_2H_6 + 6H_2O \rightarrow 2H_3BO_3 + 6H_2 + 493.4 \text{ kJ}$$

3.
$$2\text{Fe} + 3\text{CO}_2 + 26.8 \text{ kJ} \rightarrow \text{Fe}_2\text{O}_3 + 3\text{CO}$$

4.
$$Br_2 + Cl_2 + 29.4 \text{ kJ} \rightarrow 2BrCl$$

5.
$$BCl_3 + 3H_2O \rightarrow HBO_3 + 3HCl$$
 $\Delta H = -112 \text{ kJ}$

$$\Delta H = -112 \text{ kJ}$$

6.
$$2HgO \rightarrow 2Hg + O_2$$

$$\Delta H = + 181 \text{ kJ}$$

7.
$$S_2Cl_2 + CCl_4 \rightarrow SC_2 + 3Cl_2$$

$$\Delta H = +112 \text{ kJ}$$

8.
$$CaCO_3 + 2NH_3 \rightarrow CaCN_2 + 2H_2O \quad \Delta H = +90.1 \text{ kJ}$$

Thermochemical equations can be written 2 ways; with the heat written on the reactant side (endothermic) or product side (exothermic) or written to the right of the reaction as ΔH with the appropriates sign to indicate positive (endothermic) or negative reaction (exothermic). For the following thermochemical reactions, rewrite the reaction the second way.

9.
$$26.0 \text{ kJ} + \text{NH}_4 \text{NO}_3 \rightarrow \text{NH}_4^+ + \text{NO}_3^-$$

10.
$$P_4 + 5O_2 \rightarrow P_4O_{10} + 3010 \text{ kJ}$$

11.
$$Si + 2Cl_2 \rightarrow SiCl_4$$
 $\Delta H = -657 \text{ kJ}$

12.
$$2MnO_2 + 264 \text{ kJ} \rightarrow 2MnO + O_2$$